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Abstract. Verification of programs relies on reasoning about the com-
putations they perform. In engineering programs, many of these com-
putations are non-linear. Although predicate abstraction enables model
checking of programs with large state spaces, the decision procedures that
currently support predicate abstraction are not able to handle such non-
linear computations. In this paper, we propose an approach to model
checking a class of data-flow properties for engineering programs that
contain non-linear products and transcendental functions. The novelty of
our approach is the integration of interval constraint solving techniques
into the automated predicate discovery/predicate abstraction process,
which extends the expressive power of predicate abstraction-based model
checking. Using this approach, we construct a prototype model checker
for C programs called VISA (Verification of Industrial-Strength Appli-
cations). VISA is built on top of Berkeley’s BLAST and University of
Nantes’ Realpaver. We successfully apply VISA to scientific computa-
tion libraries and avionics applications to verify the absence of certain
runtime arithmetic errors.

1 Introduction

Software systems are notoriously bug-ridden. Formal techniques have become
increasingly popular in verification, bug-hunting, and automatic test case gen-
eration. In this paper, we are interested in safety properties of a particular set
of engineering programs from the avionics industry. These programs have two
distinct features. First, their state space consists of hundreds, or thousands of,
inputs to the system. Second, these programs may perform non-linear compu-
tations. More specifically, in avionics systems, input variables participate in the
computation of control signals to be sent to actuators. The laws of electron-
ics, dynamics, and geometry on which these computations are based constantly
involve mathematical expressions that include non-linear products and transcen-
dental functions.

An example of the domain of interest is given in Figure 1, taken from KB3D,
an aircraft conflict detection and resolution program [18]. We are interested in
the ability to prove that the variable a is non-zero at Line 5 (We ignore the issues
caused by floating point arithmetic for now.). A brief argument for the property



is as follows: If a is zero, then both vx and vy have to be zero. Therefore, the
first two terms in the assignment to d are zeros. The right hand side of the
assignment is a subtraction from zero the sum of products of square numbers,
which means d must be less than or equal to zero, which contradicts with the
test in Line 4.

d = 2xsx*xvxxsy*vy + sq(D)x(sq(vx)+sq(vy))
— (sa(sx)*sq(vy) + sa(sy)*sq(vx));

= sq(vx) + sq(vy);

(d>0) {
thetal = 1/a;

a
if

}

S U W N

Fig. 1. Code snippet from a conflict detection program

The challenge is to verify the kinds of properties automatically (with little
or no human interaction) and accurately (with few or no false alarms). Among
available techniques, some of which will be discussed in the related Section 7,
we will focus on software model checking because it offers a high degree of
automation. A major obstacle to software model checking is the large (infinite
in most cases) state spaces. Predicate abstraction [7, 10,15, 19,21, 36,40] has
been successful in reducing the state explosion problem in model checking. This
technique is particularly appealing when combined with counter-example driven
predicate discovery techniques [4,6,12,16,25], because together they provide a
(nearly) push-button process that, given a program and a property, will either
verify the property or report a counter-example. The method is incomplete, but
in practice, it has a high rate of success, especially when the cause of the bug
(or the absence thereof) puts a virtual limit on the state space to be searched.
Unfortunately, the decision procedures [9,17,20] used by predicate abstraction
tools are not able to decide the satisfiability of formulas that contain non-linear
computations.

This paper proposes a solution to predicate abstraction of programs with non-
linear computations: instead of using a traditional cooperative decision procedure
to answer the queries that occur during predicate abstraction and predicate
discovery, we use constraint solvers based on interval analysis. Modern constraint
solvers [24,28,34,42] adopt a branch and prune strategy to search the solution
space and apply interval computations [1,2,31] to reveal possible inconsistencies.
Although incompleteness and slow convergence are intrinsic to these solvers, they
are accurate, making them good candidates to be used in predicate abstraction.

Based on this approach, we extend Berkeley’s BLAST [26] to construct a
model checker for C programs with non-linear products and transcendental func-
tions. Among possible applications, we present a prototype tool called VISA
(Verification of Industrial-Strength Applications) that detects potential run-time
violations such as division by zero and verifies the absence of these violations



under certain conditions. Another application of this approach is in automated
test case generation [43]. We have applied VISA to software (often of tens of
thousands of lines of code) taken from the scientific computing community and
from the avionics industry, including legacy code from a Boeing 737 autopilot
simulator and KB3D. Our model checker is able to verify (or find a counter-
example of) properties that involves non-linear computation fully automatically.
This automation is not accomplished by any other tool to the best of our knowl-
edge.

The rest of the paper is organized as follows. Technical background is in-
troduced in Section 2, where we focus on software model checking based on
predicate abstraction and predicate discovery based on counter-example anal-
ysis. The challenge posed by programs with non-linear computation and our
resorting to numerical approaches are discussed in Section 3. The overview of
our solution is presented in Section 4. This section also discusses the sound-
ness and incompleteness issues relevant to different types and configurations of
the numerical constraint solvers. The implementation of VISA is described in
Section 5. Section 6 reports experimental results. We discuss related work in
Section 7.

2 Background

We present predicate abstraction and counter-example based predicate discovery
in a general framework that is not tied to a particular programming language.
Most of the material presented in this section is a review of well-known concepts.

2.1 Definitions

A (concrete) state of a program is a type preserving value assignment to program
variables, which includes artificial ones such as pc. We denote by E[s] the value
of expression E evaluated at state s. We also write s = P if the predicate P
holds at state s.

A (concrete and later, abstract) program can be organized as a control flow
graph (CFG) (N, E, M, A), where N is a set of nodes that correspond to program
locations, F is a set of edges N x N, M is a set of moves, and A is a mapping of
edges to moves. A move, concrete or abstract, is an abstraction of one semantic
step in the program that changes (a model checker’s) knowledge of the current
(abstract) state. For a program without function calls, there are two kinds of
moves: assignments and assumptions. An assignment move represents one or
more assignment statements in a program. Assumptions model branch conditions
of an if statement. One assumption is represented by a predicate showing the
result of testing the if- condition; it labels the edge from the testing to the
corresponding branch in the CFG. Given a state and a move, executing the
move will result in the next state. We write < (m, s) for the state after the
move m is executed in state s.



The CFG for the code above is illustrated in Figure 2 with edges labeled with
moves. Concrete (directly corresponding to C statements) and corresponding
abstract moves (explained in the next section) are listed alongside.

Move Concrete Abstract

El: d= 2*¥sx*vx*sy*vy bl=1
+sq(D)*(sq(vx)+sa(vy))
-(sa(sx)*sq(vy)+ sq(sy)*sq(vx))

E2: a = sq(vx) + sq(vy) b2 =1 o 8 w
E3: d<=0 not b3
E4: d>0 (b1 A b2)7 %5
b3 A = b4 : b3 . (o)
E5:  theta = 1/a nop &
E6, E7 nop nop @
Fig. 2.

To reason about moves, weakest preconditions are used. We write WP(m, P)
for the weakest precondition of P with respect to move m. We write WP (m, P)
as the weakest precondition with respect to the sequence of moves m. A counter-
example m is a sequence of moves. A counter-example m is feasible if WP (m, P)
is satisfiable. A formula is satisfiable if there is a value assignment to the variables
so that the formula is true under a certain interpretation.

2.2 Predicate Abstraction

We give an operational definition of predicate abstraction partially following
that of Ball’s [4]. Predicate abstraction accepts as input a move m and a set @ of
predicates, and outputs a function (called abstraction transition) that maps one
abstract state to another. An abstract state is represented as a bit vector. Every
bit* in the vector represents the truth value (plus another value * representing a
non-deterministic choice) of a predicate in . We denote by sg the abstract state
of s with respect to the set of predicates . We overload the operator — (m, sg)
to denote the next abstract state of sg after move m is followed (by a model
checker). We extend this operator to sets of states (concrete and abstract) in the
natural way.

The computation of the abstraction transition relation is performed for each
move. Informally, the effect of a move m over a predicate P; € @ can be written

4 Strictly speaking not a bit, but a variable ranging over values from a free lattice over
{true, false}.



as an assignment ° :
bi = W’P/(m, PZ)

where we use b; for the bit corresponding to P;, WP'(m, P) = WP(m, P) if
m is an assignment, or @) = P if m is assume(Q). Standard computation of
predicate abstraction computes an approximation of WP (m, P) as WPg(m, P),
which is implemented by calling a theorem prover to check the unsatisfiability
of @ A =WP(m, P).

The abstraction of our example with respect to four predicates (listed below)
is shown on the right hand side of Figure 2.

by :d=2x%sxxvx*syx*vy+sq(D)*x (sq(vx) + sq(vy)) —
(sq(sx  sa(vy) + sq(sy) * sa(vx))

ba : a = sq(vx) + sq(vy)

b3 :d >0

by:a=0

Note that the branch of d > 0 is computed this way: WP'(d > 0,d > 0) is
d> 0= d >0, so bz will always be true. WP(d > 0,-a =0) isd > 0 = —a =0,
which is implied by:

o = sq(vx) + sq(vy) A
d = 2 % sx % vx x sy * vy + sq(D) * (sq(vx) + sq(vy)) —
(sq(sx * sq(vy) + sq(sy) * sq(vx))

Note that, because non-linear computation is involved, the implication above
cannot be proven by the cooperative decision procedures used in previous pred-
icate abstraction methods. We will return to this issue in Section 3.

2.3 Predicate Discovery

Based on counter-example feasibility testing, counter-example driven predicate
discovery allows the model checker to incrementally discover a suitable set of
predicates, starting with an initial value of @. This procedure is known as predi-
cate refinement and is in general incomplete (c.f., [4]). Let m = mq,...,m, be a
counter-example. Iteratively, we compute the weakest preconditions P, ..., Py:

P1 - Wp(mna (b)
Pi+1 = Wp(mn—i—i-h Pi)

5 Conventionally, an assumption is represented by a predicate. But as far as model
checking is concerned, it is equivalent to this assignment form.



We check whether P; is satisfiable. If, for some j, P; is not satisfiable, we
attempt to find new predicates from the path from m; to m,. One way to find
new predicates is to collect all the predicates involved or use certain heuristics to
select the new predicates. A better approach is to use Craig interpolation [25,29].

Again, in our example, we will need to check the satisfiability of non-linear
formulas. The challenge and possible solutions are discussed in the next section.

3 Reasoning About Non-linear Computation

As revealed by the example in Section 2, reasoning about non-linear computa-
tion is an integral part of the abstraction and model checking mechanism. Un-
fortunately, the decision procedures used in counter-example driven predicate
abstraction have trouble deciding the satisfiability of such formulas. They tend
to work in a weaker theory of arithmetic. For example, in bug-hunting applica-
tions such as SLAM [7] and BLAST [26], the forms of the constraints are limited
to propositional logic and quantifier free predicate logic with uninterpreted func-
tions. When verifying hybrid systems, stronger decision procedures that accept
linear equations and inequalities are used. For example, d/dt [3] uses the Lp_solve
software package. Verification of non-linear programs in general is hard because
non-linear arithmetic is not decidable over mixed (integer and real) variables
and the satisfiability problem for formulas involving transcendental functions is
not decidable even for reals.

3.1 Existing Tools

Existing decision procedures, such as ICS and CVC-lite [9, 20], also attempt
to decide the satisfiability of non-linear products. Due to the nature of these
cooperative decision procedures, such an attempt is made only during an early
phase of an arithmetic sub-theory to rule out simple unsatisfiable cases. From
our experience, the current versions of these tools cannot solve constraints that
appear in our predicate abstraction.

Based on a variation of the simplex method [35] and computation of Grobner
basis [41], Tiwari’s non-linear decision package [39] can solve many non-linear
constraints very efficiently. Still the current version cannot handle unsatisfiable
constraints that involve perfect squares.

None of these procedures mentioned above solves constraints that involve
transcendental functions; in the best case, they can solve such constraints with-
out interpreting these transcendental functions (for example, they can decide
that formula sin(x) = sin(z) + 1 is not satisfiable).

3.2 Numeric Decision Procedures

Modern constraint solvers, pioneered by Numerica [24], adopt a branch-and-
prune technique to either find a set of intervals that contain a solution or report
that no solution is possible. In constraint solvers, the set of ranges where a



variable is defined is called a box. The band-and-prune algorithm takes as ar-
guments a set of constraints, an initial set of boxes for each variable appearing
in the constraints, and a precision. If during the search, all the boxes contain
intervals that are smaller than the precision, then the search stops. The internal
loop of the algorithm consists of two stages: prune and branch. Prune removes
boxes that are not in the solution space and branch splits one box into two or
more boxes. The prune stage enforces local consistency conditions by reducing
intervals associated with the variables. Typically, the constraints are evaluated
using interval arithmetic [31].

A group of local constraint satisfaction techniques with polynomial time
worst case complexity are also used. They can be applied to non-linear, non-
square, and heterogeneous systems. Furthermore, numerical methods are adopted
to process either a sub-problem or a sub-class of problems. For example, a New-
ton method can be used for an equation of the form f(z) = 0, where function f
is square and differentiable [1]. Moreover, systems of inequalities can be handled
by a version of the Simplex method [27].

4 Approach

The goal of VISA is to detect potential runtime safety bugs for C programs. Like
BLAST, it allows a user to specify the property that she wants to check. The
property specification is instrumented with the source code (at the CFG level)
to form a new CFG where a violation will be reported when a special error node
is reached during model checking.

The model checker will take this instrumented CFG as input. The model
checking is based on the procedures described in Section 2. First, predicate ab-
straction is performed using an enhanced theorem prover, which will behave just
like a traditional theorem prover if the candidate theorem (constraints) does not
contain non-linear computation, and will behave like a wrapper of a constraint
solver when attempting to prove a non-linear candidate theorem. Then, model
checking is performed over the abstract model. When the model checker con-
cludes the (artificial) error label is not reachable, VISA will report that the code
is safe. Otherwise, if a counter example is discovered by the model checker, the
same enhanced theorem prover will be used to determine its feasibility. If the
error path is feasible, VISA will report an error. Otherwise, VISA attempts to
refine the error trace to find a new predicate to repeat the abstraction/model
checking process. Figure 3 illustrates the architecture of VISA.

4.1 Instrumentation

In VISA, a source program is first instrumented with respect to a property spec-
ification. In the instrumented program, an error node (in the CFG) is reachable
if and only if the specified error condition is true in the source program.

We have designed a specification language that is similar to that of BLAST’s
[11]. A cut-point is a program location (strictly speaking, not a program location,



but a node in CFG, see Section 5) where we may want to insert a check for a
certain operation where we may insert a check; all cut-points that are pertaining
to the operation are called (a not-entirely-misuse of term) aspect. A pattern
is associated with a cut-point, which will match the actual expressions that
participate in the operation of concern.

In VISA, the checking of division by zero is instrumented by first querying
the patterns associated with division operations that we want to check. Such
a pattern includes a divident and a divisor. We assert that this divisor must
not be zero before division takes place. There is practically no restriction on the
form of the formula being asserted. For example, a user may also choose to check
whether the divisor’s abstract value is less than a small positive constant.

Next, an instrumentor of VISA will scan the internal representation of the
syntax tree (the CFG in BLAST), add an artificial test at an appropriate place
per the specification, for example, before the division of interest. The assertion
that specified by the user will be tested; if it is not true, an artificial error node
is reached.

Uneble To Proced

Property Holds

Fig. 3. Architecture of VISA

Once the code is instrumented, the model checker will check to see if the
error node is reachable. The impact of using constraint solvers in such a model
checker is discussed in the next subsection.



4.2 Using Constraint Solvers In Model Checking

In the approaches described above, the model checker uses the constraint solvers
to process non-linear constraints at two different places (computing the abstract
transition relation and testing/refining a candidate error trace). There are var-
ious configurations/types of numerical constraint solvers. Each solver behaves
differently with regard to soundness, completeness or performance and is suit-
able only for certain applications.

Satisfiability vs. Unsatisfiability Ideally, a constraint solver may return
three possible answers: Satisfiable, Unsatisfiable, and Don’t Know. In practice,
a tool may return two answers (Satisfiable/Don’t Know, or Unsatisfiable/Don’t
Know). For example, Realpaver, which is used in our prototype implementation,
will either declare that a set of constraints is not satisfiable or give a set of
boxes that might contain a solution. The latter should be considered as Don’t
Know. We will call a constraint solver that returns Satisfiable/Don’t Know as
a satisfiability checker while one that returns Unsatisfiable/Don’t Know as an
unsatisfiability checker.

— When testing whether an error path is feasible, an unsatisfiability checker
may return a Don’t know. Then we cannot detect an unfeasible path and can
only raise a false alarm. Conversely, a satisfiability checker may return Don’t
know on a feasible path, which further contributes to the incompleteness of
the system.

— When computing predicate abstraction, we should always use an unsatisfia-
bility checker. As long as the Unsatisfiable answer is trusted, the soundness
of predicate abstraction is preserved. Of course, Don’t know answers further
contributes to the imprecision that already exists in predicate abstraction.

It is also worth mentioning that the precision of a tool is adjustable. The
more precise the tool is, the slower it is.

Floating Point vs. Real Numbers It is also important to know exactly what
satisfiability problem a particular solver aims to solve. In particular, whether
the problem domain is real numbers or floating point numbers has a profound
impact on the soundness and completeness of the system.

In theory, interval-based techniques can solve satisfiability problems for both
floating point numbers and real numbers. If the satisfiability is interpreted as the
existence of a floating point solution, because the domain is finite, the procedure
always terminates; if the satisfiability is interpreted on reals, then the procedure
may not terminate. But the unsatisfiability check can be highly accurate [22,34].
So far, the majority of the tools have been focused on solving real constraints.
As a result, our experience has focused on these solvers.

When using a solver for real numbers, the result of both verification and bug-
hunting must be treated with care. If the model checker signals that there is no
error, then if we do not consider rounding errors, this answer is sound provided



that the over-approximation condition is (as expected) satisfied. On the other
hand, if the model checker finds a violation based on the fact that there is a real
solution to a constraint, then this real solution may not correspond to a floating
point number solution, in which case we have a false alarm.

It is hard for constraint solvers to maintain a semantics that exactly matches
that of the floating point arithmetics of the machine; in reality, they rarely do.
When an unsatisfiability checker decides that a particular set of boxes does not
contain a solution, due to rounding error, there could still be a solution that
causes the constraints to be satisfied. Here we must not confuse the interval
arithmetic used in determining the unsatisfiability with the interval arithmetic
used in controlling rounding error. In practice, a constraint solver extensively
uses the former but seldom uses the latter.

The implication of this problem with rounding error is that we cannot claim
full verification without the assumption of absence of rounding errors.

4.3 Example of VISA Approach

In Figure 2, suppose we are interested in Line 5, where a division takes place.
To decide whether a could be zero, a counter-example driven approach will start
the initial value of ¢ to be {a = 0.0}. Line 1 does not affect this predicate. Line 3
assigns the sum of two square numbers to a. The precondition of a = 0.0, for
example, will be:

0 = sq(vx) + sq(vy)

The predicate abstractor will attempt to decide whether combinations of predi-
cates imply this precondition. This decision is made by calling an unsatisfiability
checker. If the combination is a = 0.0, then we decide whether constraint:

(a=0.0) A
=(0 = sq(vx) + sq(vy))

is satisfiable to see if @ = 0.0 should be included in the approximation. The
constraint is acquired as a conjunction of a = 0.0 and the negation of the pre-
condition (the conclusion of the implication). This constraint is satisfiable, which
means the implication does not hold. Repeating this for =(a = 0.0), Line 3 will be
translated into b = %, where b is the Boolean variable corresponding to a = 0.0.

Suppose that we have a test that checks whether a is 0 between Line 4 and
Line 5. Because a is *, there will be a path in which a = 0.0 could be true. This
way we have a counter-example. By analyzing this trace, we will find out that
the following constraint, which is computed using weakest preconditions, is not
satisfiable (note that the counter-example contains a test of a at the end, which
is not reflected in the figure):



a=0.0A
0.0 = sq(vx) + sq(vy) A
0.0<dA
0.0 < 2 % sx % vx * sy x vy + sq(D) * (sq(vx) + sq(vy)) —
(sa(sx * sq(vy) + sq(sy) * sq(/dvz))

A satisfiability constraint solver will decide that the constraint is not sat-
isfiable. Thus the error trace is not feasible. Then related predicates (the four
predicates described earlier) are added into @. This time, when the model checker
reaches Line 4, in addition to d > 0, the predicate abstraction will also notice
that =(0.0 = a) must be true because the constraint below is not satisfiable. This
constraint is the conjunction of the negation of formula above, that is, a = 0.0,
the combination of predicates being tested and d > 0, which is introduced by
computation of the precondition (details on how the constraints is computed are
described earlier in Section 2.2).

d = 2% sx xvx* sy * vy + sq(D) x (sq(vx) + sq(vy)) —

(sa(sx * sq(vy) + sq(sy) * sq(Idvz)) A
a =sq(vx) +sq(vy) Ad >0Aa=0.0

Then, between Line 4 and Line 5 the predicate abstractor will recognize that
a = 0.0 must be false. Therefore the program will not cause division by zero.

5 Implementation of VISA

We implement our model checker based on two existing systems, BLAST from
Berkeley [26] and Realpaver from University of Nantes [28]. BLAST provides a
reachability test framework for a C program; Realpaver can be used to determine
the unsatisfiability of a set of non-linear constraints. We extend Realpaver to
a decision procedure of the Nelson and Oppen flavor. We then plug the new
decision procedure into BLAST, replacing the decision procedures used there.

5.1 Extending BLAST

With C programs, many problems must be addressed before or during model
checking. Function calls, pointers, various data types and a programmer’s ten-
dency to explore their flexibility are just some of them. Using CIL (C Interme-
diate Language) [30], BLAST handles full C syntax and represents different C
syntax structure in a uniform and less ambiguous way. BLAST also provides
context free analysis and alias analysis in a best-effort manner. Therefore, we do
not focus on the issues mentioned above and rely on BLAST to cope with these
for us, albeit pointers remain a major source of problems.



One extension (besides the interface to theorem provers, which will be covered
in the next subsection) to BLAST is an instrumentation API that allows a user
to specify the properties that they want to check. The specification language of
VISA can be viewed as a front end using this API. A user can query about a cut-
point and use the matching pattern to define a check using both the specfication
language (as we have shown earlier) or equivalently, the API. Besides division,
VISA supports the following aspects: addition, function call/return, array access,
and assignment.

A cut-point in VISA is a finer-grained event that is of interest to a property
comparing that in BLAST. For example, in BLAST, all function calls, are pos-
sible cut-points to verify the correct use of APIs. But this specification language
cannot be used in VISA because the cut-points do not include arithmetic (and
other) operations.

Other parts of BLAST that are particularly useful (some of which require
re-programming) in VISA include:

— Lazy abstraction. The cost of predicate abstraction is exponential in the
number of predicates. One of the important features of BLAST is lazy ab-
straction, where a predicate is included in the computation only in a part of
the model checking tree where it is necessary. This is especially useful when
clusters of predicates are locally relevant to the property only in certain parts
of the search path. Such a pattern is found frequently in the programs of
interest.

— Soundness issue. BLAST provides several options to compute the predicate
abstraction. For speed considerations, the most commonly used ones are not
conservative with respecct to aliases because alias-safe predicate abstraction
is too expensive to be practical and alias analysis in general is not precise
enough. Although the abstraction may be unsound and not suitable for strict
verification, it is still good for bug-hunting.

— Trace Slicing. This is arguably one of the most useful features of BLAST. The
idea is to slice the candidate error path to a portion of it that maintains same
feasibility characteristics. Because the constraints generated in this stage are
normal large and become a bottleneck for the constraint solver. Slicing the
path will often generate a surprisingly small constraint. When combined with
Craig interpolation, this feature is useful for dealing with counter-based loops
(such as a for loop), which are sometimes used in initialization parts of the
code and a major cause of unfeasible error trace.

5.2 Realpaver

We use Realpaver [28] as the numerical constraint solver. Based on interval
computations, Realpaver solves non-linear formulas over the real numbers. The
inputs to Realpaver are

— a finite list of real variables V = {z1,...,2,},
— alist of constraints (that can contain nonlinear products and transcendental
functions), and



— an initial set of of interval domains x1,...x, (called a bozx) for the variables
in V.

Under the assumption x; € x;, for 1 < ¢ < m, Realpaver returns either a

no solution in the initial box message or a list of boxes, included in the initial

box, that contain solutions to the conjunction of the constraints. Realpaver also

returns a flag that indicates whether the resolution process was reliable or not.

A non-reliable output means that some solutions may be lost during the process.
Realpaver is claimed to satisfy the following property [28].

Proposition 1 (Reliability). Realpaver computes a union of boxes that con-
tains all the solutions of the original constraint satisfaction problem. Therefore,
if no box is computed by Realpaver, the constraint satisfaction problem has no
solutions.

This property means that Realpaver can be used as the basis for an unsatis-
fiability decision procedure.

We use an ad hoc method to integrate Realpaver into a cooperative decision
procedure (cve-lite [9]). Specifically, the core engine of a cooperative decision
procedure uses variable abstraction to divide input formulas (of multiple the-
ories) into formulas of different sub-theories. That is, these formulas do not
contain sub-formulas that involve functions or predicates of a different theory.
For each sub-theory, a combination of so-called solver and canonizer will find
equalities and dis-equalities; this information is propagated to the core engine to
find either a solution or inconsistency. Realpaver cannot be a solver as needed
by such cooperative decision procedures because it cannot discover equality or
dis-equality in an easy way. However, because it can discover inconsistencies, it
is possible to put Realpaver into an arithmetic sub-theory before the solvers of
this sub-theory is called and signal the core engine only when inconsistency is
found. Modern cooperative decision procedures already use different heuristics
to find simple inconsistency early at that stage (for speed considerations) [8]. In
this sense, Realpaver can be considered as another heuristic.

6 Experience

In a preliminary case study, we apply VISA to a set of public domain scien-
tific computation libraries. We choose these programs because 1) as scientific
computation applications, they resemble the engineering programs in aviation
industry, the domain of our interest; 2) these programs are actively maintained
public domain program and are considered programs with reasonable quality; 3)
they might not be as good in quality as the programs in the aviation industry,
which makes them a good target to improve. We primarily look for division by
zero violations. Table 4 below lists a few representative programs, their sizes,
the number of divisions, model checking time, and the number of runs when
the model checker fail to terminate (failure runs column in the table). The size
of the program is measured by the numbers of lines of syntactically reachable



functions with comments removed. The model checking time is the mean time
in seconds for all terminating runs (we configure VISA to run once per division).
The data reported here is on executing VISA on a commodity laptop (Pentium
M 1.73GHz, 512Mb).

Program|Size |No. of Div.[MC Time|Failure Runs
anneal.c [12602|27 210 3
conjdir.c|24134{20 288 1
cube.c 1834 |10 65 0
spmat.c [18517|11 60 0

Fig. 4. Representative Runs of VISA

We found division-by-zero traces for three of these programs (anneal.c, con-
jdir.c and cube.c). Human inspection of the error trace proves that these are all
not false alarms. When there are no alarms, through reasoning about the source
code (and the model checking trace produced by VISA) manually, we are able
to double-justify the absence of division-by-zero.

Also, we apply VISA to KB3D. The correctness of this program, including
the safety with regard to division-by-zero, has been previously verified using the
theorem prover PVS [32]; thus the program is considered of high quality. KB3D
is a small program of a few thousand lines and contains predominantly geometric
computations. KB3D contains a number of good examples that demonstrate the
capability of VISA. We are able to verify that this program is free of division-by-
zero. The computation time is usually within a minute. We conjecture that other
tools either are not be able to handle KB3D due to large number of non-linear
computations or report false alarms.

VISA and its test suites are available on line at http://www.nianet.org/munoz/VISA.

7 Related Work and Conclusion

7.1 Program Analysis

In computer science folklore, data flow analysis has been treated as model check-
ing over abstract domains [37]. Yet predicate abstraction can be viewed as a
systematic way of designing abstract interpretation, and the counter-example
driven approach is strongly connected with the widening operator. Abstraction
based on interval analysis has been studied by Cousot’s group to reduce runtime
errors in C programs. Their tool, ASTREE [14], is based on such abstraction
domains as octagon, ellipsoid and decision trees. ASTREE has been success-
fully applied to large embedded, command and control, safety critical real-time
software. Differences between VISA and ASTREE are: First, VISA essentially
provides an abstraction mechnism for a non-linear domain, which is a substantial
(and practically useful) gain of expressive power; second, VISA does not handle



the rounding errors, while ASTREE does; third, VISA is fully automatic (for all
programs) while ASTREE needs to be trained to work on a family of programs;
and fourth, VISA inherits unsound factors (such as pointers) and incomplete-
ness from BLAST, which is not an issue with ASTREE because of its selected
application domain.

Combining different aspects from VISA and ASTREE is a promising research
direction. ASTREE researchers have pointed out that certain abstractions can-
not be achieved using a counter-example based approaches; the problem that we
had with counters is another example where other forms of abstract interpreta-
tion (different from predicate abstraction) are more efficient.

7.2 Decision Procedures

The decidability issue of real arithmetic dates back to the 1930’s. Tarski [38]
shows the first order theory of real numbers with addition and multiplication
is decidable through quantifier elimination. Collins shows that quantifier elimi-
nation can be done through Cylindrical Algebraic Decomposition [13]. Adding
different functions to the theory is different case by case. For example, adding
periodic functions such as sin will cause the theory to be undecidable, while
adding exp is decidable conditionally (if Schanuel’s conjecture holds). Numerical
decision procedures (for so-called stable formulas) are studied by Ratschan [33].

Cooperative decision procedures are mostly based on proposals by Shostak
and by Nelson and Oppen. Various systems are used in practice, such as ICS [20],
CVC-Lite [9], Simplify [17], Euclid, etc. Microsoft’s Zapato [5] is designed specifi-
cally to solve formulas for predicate abstraction and is used in Microsoft’s SLAM.
Zapato uses Nelson and Oppen’s method to combine a theory of uninterpreted
functions with a solver for conjoined (linear) integer constraints based on Har-
vey and Stuckey’s method [23], which is complete and linear in time. Zapato
also takes advantage of fast propositional SAT solvers to first try an abstracted
version of the original constraints.

8 Conclusion

This paper extends the current practice of automated software model check-
ing to checking data-flow properties for real, engineering programs that contain
non-linear products and transcendental functions. We propose the adoption of
interval constraint solvers as the (un)satisfiability checkers used in predicate ab-
straction and predicate discovery. The soundness and completeness issues are
discussed under both theoretical and practical settings. Factors that affect these
issues are identified. Based on our proposed approach, a practical system is built
for bug-hunting/verification. This prototype shows the potential applications
of our model checking framework. The effectiveness of the prototype system is
demonstrated on real programs from the avionics industry.

We feel that the framework of our method and the initial success of our
prototypes constitute a reasonable contribution to state-of-the art in predicate



abstraction research. Our preliminary case studies demonstrated the expressive
power of this approach in verifying arithmetic safety. The prototypes that we
implemented are valuable complements to the existing tools in the respective
communities. We expect the approach to be integrated with other approaches as
part of a collective method to prove or disprove run-time errors in an accurate
and static way.
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